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Modal interpretations of quantum mechanics propose to solve the measurement 
problem by rejecting the orthodox view that in entangled states of a system which 
are nontrivial superpositions of an observable's eigenstates, it is meaningless to 
speak of that observable as having a value or corresponding to a property of the 
system. Though denying this is reminiscent of how hidden-variable interpreters 
have challenged orthodox views about superposition, modal interpreters also 
argue that their proposals avoid any of the objectionable features of physical 
properties that beset hidden-variable interpretations, like contextualism and 
nonlocality. Even so, I shall prove that modal interpreters of quantum mechanics 
are still committed to giving up at least one of the following three conditions 
characteristic of classical reasoning about physical properties: (1) Properties 
certain to be found on measuring a system should be counted as intrinsic properties 
of the system. (2) If two propositions stating the possession of two intrinsic 
properties by the system are regarded as meaningful, then their conjunction should 
also correspond to a meaningful proposition about the system possessing a certain 
intrinsic property; and similarly for disjunction and negation. (3) The intrinsic 
properties of a composite system should at least include (though need not be 
exhausted by) the intrinsic properties of its parts. Conditions 1-3 are by no means 
undeniable. But the onus seems to be on modal interpreters to tell us why rejecting 
one of these is preferable to an ontology of properties incorporating contextualism 
and nonlocality. 

1. I N T R O D U C T I O N :  T H E  I N T E R P R E T A T I O N  O F  

Q U A N T U M  M E C H A N I C S  A S  A P R O B L E M  A B O U T  
P H Y S I C A L  P R O P E R T I E S  

T h e  m a i n  task f aced  by in terpre ters  o f  q u a n t u m  m e c h a n i c s  s eems  to be  

that  o f  ex t rac t ing  a cohe ren t  and phys i ca l l y  sens ib le  s tory f r o m  the  theory  
about  phys i ca l  proper t ies .  
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The first stumbling block to this enterprise comes from Heisenberg's 
relations. Are these merely uncertainty relations limiting our knowledge of the 
simultaneous values of incompatible observables? Or are they indeterminacy 
relations symptomatic of a deeper breakdown of classical physical concepts 
(like position and momentum) at the level of an individual system? 

If we suppose we are dealing with an instance of conceptual breakdown 
here, as orthodox interpretations of the theory would have it, this breakdown 
has some curious, indeed nearly paradoxical, implications. As the infamous 
debate between Einstein-Podolsky-Rosen and Bohr brought out, one would 
have to say that which concept is applicable to a given system (e.g., position 
versus momentum) must depend, not just on which measurement one subjects 
that system to, but also on which measurements one subjects other faraway 
systems to, which, if not outright action at a distance, is at the very least 
'spooky' (to borrow Einstein's characterization). Moreover, as Schr0dinger 
poignantly emphasized, once one imposes limitations on the simultaneous 
applicability of basic physical concepts at the microlevel, one has no natural 
way to prevent these limitations from coming into force at the macrolevel 
and stopping us from asserting seemingly reasonable things, for example that 
a cat is definitely either alive or dead. No natural way, that is, other than 
stipulating by fiat that macroscopic objects like cats are to be classically 
described, and perhaps introducing a collapse postulate into the theory to 
secure the possibility of such description. 

So the obvious thing to do to avoid all that would seem to be to just 
deny conceptual breakdown, go the way of the hidden-variable theorist, and 
reassert determinacy and the simultaneous applicability of "incompatible" 
physical concepts despite our inability to simultaneously measure them. At 
least that way SchrOdinger's cat would no longer haunt us! But we learn 
from the theorems of Kochen-Specker and Bell that this is still no easy route 
back to a reasonable and physically intuitive ontology of the properties of 
quantum systems. For not only must we now admit that the value of an 
observable A must sometimes be found to be different when measured along 
with B as opposed to C (where [A, B] = 0, [A, C] = 0, but [B, C] 4 0), but 
that this must be so even if the observables B and C pertain to a system 
spacelike separated from the system that A pertains to! In short, not only 
must we in some sense create values for observables like A when we measure 
them, on a hidden-variable view, but orthodoxy's 'spooky' action at a distance 
starts to look more and more, in this new incarnation, like the real thing! 

The difficulties posed by the dilemma of choosing between the orthodox 
and hidden-variable conceptions of quantum properties are thus very acute. 
But there is another way of looking at the whole dilemma which promises 
a relatively painless resolution of it. The resolution is offered by so-called 
'modal' interpretations of quantum mechanics, which have a distinguished 
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list of advocates: Bub (1994), Dicks (1993), Healey (1989), Kochen (1985), 
and van Fraassen (1991). 2 

All these interpretations are, in a way, hybrids of the orthodox and 
hidden-variable viewpoints. Like orthodoxy, they impose restrictions on the 
properties one may simultaneously ascribe to a quantum system at any given 
time. But these restrictions are not so stringent that one is prevented from 
ascribing a definite property of life or death to Schr6dinger's cat when it 
gets entangled with some potentially cat-killing device, so in that sense, these 
interpretations are like the hidden-variable point of view. However, precisely 
because modal interpretations do not go all the way toward hidden-variables 
and claim that all observables of a system correspond to intrinsic properties 
it possesses, one of their 'selling points' is supposed to be that they avoid any 
objectionable contextualism or nonlocality of the kind required for hidden- 
variable theories by the theorems of Kochen-Specker and Bell. So their 
interpretive package is supposed to secure a sensible, if restricted, notion of 
the properties of quantum systems, without all the physically implausible 
baggage of hidden-variable theories. 

Despite this, the aim here will be to emphasize that these modal interpre- 
tations do, and more importantly must, involve some significant deviation 
from the usual 'classical' notion of what it means for an intrinsic property 
to be possessed by a system. So these interpretations are certainly not exempt 
from the task of defending their own conception of properties against those 
of orthodoxy and hidden-variable theories. 

2. MODAL INTERPRETATIONS AND CLASSICAL REASONING 
ABOUT PHYSICAL PROPERTIES 

Recall once again that the aspect of the problem of properties emphasized 
by Schr~dinger was what to make of entangled superpositions of states like 
the following (where I have used the usual ket and tensor product notation, 
and am letting wl + w2 = 1, 0 < wl r w 2 < 1): 

]q~) = ~ l l D e c a y  after time t)Ato m @ ]Dead)cat + 

,/-~2[No decay after time t)Ato m @ [Alive)cat 

If our attitude is an orthodox one, so superpositions like this indicate that 
the terms in them must refer to observables which lack definite values, then 
we are put into the uncomfortable position of denying objective reality to 
much cherished properties, like life versus death, of everyday macroscopic 
objects, like cats. 

21 have only taken the trouble to mention the most significant recent publications of these authors, 
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On the other hand, modal interpreters, though not in the business of 
allowing all observables of a system to be simultaneously ascribed values 
(which would automatically force both contextualism and nonlocality), do 
grant the 'life observable'  of the cat in the above entangled state the status 
of being a definite property of the cat despite that entanglement. Clearly, 
then, modal interpretations are operating under a different, nonorthodox crite- 
rion for what it means to possess an intrinsic property. 

We need not be detained by outlining the details of that criterion, or 
should I say those criteria: for the proposed new criteria for property attribu- 
tions differ, sometimes in subtle ways, from one modal interpreter to another. 3 
All we shall need to focus on is the two central claims to which all modal 
interpreters subscribe: 

MII :  SchrOdinger's cat is definitely alive or dead despite its entanglement 
in I~). 

MI2: At any given time, only a proper subset of all possible properties 
of a given system correspond to the definite ("intrinsic") properties it actu- 
ally possesses. 

MI~ distinguishes these interpretations from orthodoxy, and MI2 from hid- 
den-variables. 

Since the projection operators of any system S's Hilbert space correspond 
to all the different possible propositions that assert S possesses some particular 
property, it is useful to reformulate the above claims succinctly as follows. 
When the composite system of which S is a component occupies the pure 
quantum state I~b), let Def~+~(S) denote the set of  particular intrinsic properties 
system S possesses in that state, where this set is represented, in general, 
only by a subset of the set of all the projection operators, call it {P(S)}, 
defined on the Hilbert space for S. For projection operators with one-dimen- 
sional range generated by a vector I+), we will use the standard notation 
P~+>. In the case of Schrtidinger's cat, modal interpreters have then committed 
themselves to asserting the following4: 

MI l :  {PIAlive)cae PEDead)cat} ~ Defl+~(Cat). 
MIz: Defj~,>(Atom + Cat) C {P(Atom + Cat)}. 

By deviating from orthodox and hidden-variable property ascription in 
this way, I will show that modal interpretations have, in a sense, 'painted 

3It is precisely because I want to avoid one of these differences that I have chosen w~ v~ w 2 
in state 10); for in the unlikely event that wt = w2 (exactly), the criteria of property attribution 
proposed by Dicks and Healey only license ascribing the trivial observables 0 and I definite 
values for the Cat system (so they will only endorse MIt when wL :~ w2). 

4They are also committed to the analogs of MI2 for the Atom and Cat systems separately, but 
these will not figure in the discussion to follow. 
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themselves into a comer '  by having to give up at least one of three other 
features of classical property ascription which are independent of the require- 
ments of noncontextualism and locality. 

I shall formulate each of these three features of classical property ascrip- 
tion I have in mind as a condition on the set Def~,~(Atom + Cat) that we 
might at least classically expect to be satisfied. As it happens, all the different 
modal interpretations in the literature violate one or more of these conditions, 
as I will shortly point out. The fact that they must do so, simply as a 
consequence of affirming MIl and MI2 above, will be proved in the next 
section. Let me emphasize, though, that I am not claiming these three condi- 
tions are a priori or in some way undeniable, but simply that denying them 
could well be seen as no worse than endorsing things like contextualism 
and nonlocality. 

First, properties which are certain to be found on measuring a system 
should surely be regarded as being truly possessed by the system. If we can 
always correctly predict with certainty that every time I look at the moon I 
will find it up there in the sky, then it is (classically!) no grave mistake to 
make the inference that it really is there even when, on some occasion, I 
choose not to look. In fact, the real presence of the moon up there is the best 
explanation for why it is true that I am bound to see it if  I look! So we at 
least expect that the following will hold true of the set Def~,)(Atom + Cat): 

CPI: Prob~,~(P = 1) = Tr(PP~,~) = 1 ~ P ~ Def~+~(Atom + Cat). 

Note that this kind of inference to the presence of a property would be 
utterly spurious if the prediction with certainty about finding that property 
were somehow achieved at the expense of  disturbing the system. That, of 
course, was the crucial dispute between Einstein-Podolsky-Rosen and Bohr! 
If my looking up in the sky happens to be what makes the moon be where 
it is, then I undercut any grounds I might have for saying it is up in the sky 
when I am not looking. However, unlike in the EPR-Bohr debate, we are 
not here considering an instance of prediction with certainty which is gained 
at the expense of conditionalizing on a measurement result obtained on 
another system entangled with the system under consideration. We may 
suppose the Atom + Cat system under consideration, though itself entangled, 
is not entangled with any aspect of its environment, so that all CP~ says is 
we should take those projections which have the Atom + Cat's state [0) as 
an eigenstate (with eigenvalue 1) to represent possessed properties. In that 
case, it is well known that a measurement of any such projection (albeit a 
complicated measurement to practically perform on a macroscopic system) 
will not disturb the state 10). 

Second, suppose we have two propositions that state the possession of 
two different intrinsic properties of a system, like "This marble is red" and 
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"This marble is opaque." If we regard these propositions as meaningful, let 
us say true, of the marble, so the corresponding properties actually are 
possessed by it, then (again, classically!) we are predisposed to regard the 
proposition "This marble is red and opaque" as a meaningful ascription of 
a true (conjunctive) property to the marble. Similarly, of course, for "This 
marble is red or opaque" and "This marble is not black." Thus intrinsic 
properties of a system should be amenable to logical combination in these 
ways to produce new propositions that meaningfully attribute intrinsic proper- 
ties to the system. What this means is that the set of propositions ascribing 
intrinsic properties should be closed under conjunction, disjunction, and 
negation. Since the only natural analogs of these operations we have for 
projection operators are subspace intersection (n) ,  span (O), and orthogonal- 
ity (_1_), it is natural to require the following of the set Def~,>(Atom + Cat): 

CP2: {P, P'} C_ Defl~,)(Atom + Cat) ~ {P• P n P', P �9 P'} C_ 
Def~+>(Atom + Cat). 

Notice that I have not required P and P' to be compatible, so CP2 
demands that Def~+>(Atom + Cat) form an ortholattice under N, O, and 3_. 
I am well aware that there is a perfectly respectable strain in quantum logic 
which requires only closure of property-ascribing propositions under these 
ortholattice operations restricted to compatible projections, thus only requires 
that such propositions form a partial Boolean algebra. But if it turns out 
that modal interpretations have to go to such lengths to secure a consistent 
conception of properties in quantum mechanics, then that would be very 
interesting indeed. Certainly hidden-variable interpretations which ascribe all 
observables definite values automatically satisfy CP2, and so have no need 
to revise classical logic to account for its violation. And even orthodox 
interpreters would not deny CP2 in the case where P and P' are incompatible. 
For in that case, they would never simultaneously ascribe two such properties 
to the system in the first place, so that the question as to whether their 
conjunction or disjunction is meaningful does not even arise on an orthodox 
approach. (Even von Newmann's brand of orthodoxy, which equates the set 
of definite-valued projections with those that get assigned probability ! or 0 
by the state, satisfies CP2 despite the fact that that set contains incompati- 
ble projections.) 

Third, the intrinsic properties of a composite system should at least 
include the intrinsic properties of its parts. For example, whenever its true 
(respectively, false) that "The left-hand wing of the 747 has the property 
of being warped," then it must surely (classically, anyways!) also be true 
(respectively, false) that "The 747 has the property that its left-hand wing is 
warped." It may seem that the difference between these two propositions is 
inconsequential; but the fact that we take the former to entail the latter makes 
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all the difference to whether we are confident flying in that 747! Since the 
projection operator analog of a property of a composite system pertaining to 
one of its parts is I | P (where P is a projection on the Hilbert space of the 
part on its own), we want to require the following of the set Def~,> 
(Atom + Cat): 

CP3: P ~ Def~(Cat) =~ I | P ~ Def~,~(Atom + Cat). 

This condition still leaves plenty of room for holism about properties in 
quantum mechanics (which is a feature of all modal interpretations), because 
it is quite different (pace van Fraassen, 1991, p. 290) from requiring that the 
intrinsic properties of a composite system are exhausted by, or reducible to, 
the properties of its parts. 5 

Of these three conditions on reasoning classically about physical proper- 
ties, Dieks, Kochen, and van Fraassen all deny CP3, Bub denies CPt, and 
Healey denies both CPI and CPz. Only van Fraassen (1991, pp. 290-294) 
and Healey (1989, pp. 74-76) express some discomfort at doing so. 6 We 
shall now see that these interpretive moves modal interpreters have made 
are not just optional for them, but forced by their endorsement of MIl and MIe. 

3. WHY MODAL INTERPRETATIONS MUST ABANDON 
CLASSICAL REASONING ABOUT PHYSICAL 
PROPERTIES 

The logical structure of the argument is straightforward: assuming CP~, 
CP2, and CP3, w e  can derive -~MI2 from MII. 

Assuming MI1, CP3 gives 

{I @ PIAlive)cat, I Q P~Dead>Cat} C Defp,>(Atom + Cat) 

s A natural formulation of that requirement in this context would be P ~ Def~,)(Atom + Cat) 
:=~ P = P '  | P", where P' ~ Def~,>(Atom) and P" e Defj,>(Cat), which, if anything, is more 
like a converse to C P  3. (In fact, C P  3 in conjunction with CP2 readily entails this latter 
requirement, but with the implication going from right to left.) 

6In fact, Healey finds himself having to deny, not just CP2, but the even weaker claim that the 
propositions about intrinsic properties of a system form a partial Boolean algebra. This comes 
about as a result of his denying what he calls 'property intersection': essentially, that if two 
different (necessarily compatible) projections in the Boolean algebra generated by some 
observable's spectral resolution have intersecting ranges, and those projections represent 
intrinsic properties of the system, then the projection onto their intersection also represents 
an intrinsic property. 

I should also note that the properties assigned by Kochen and Dieks to any system form 
a Boolean algebra of projections, therefore they cannot satisfy CPf since the set of all projections 
assigned probability 1 by the state of a system contains incompatible projections. However 
in my paper (1995) I showed that the property sets of Kochen and Dieks can be enlarged to 
satisfy CP~ while still at least forming an ortholattice, i.e. satisfying CP2. So what seems 
essential here is their rejection of CP3. 
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We also know from CPI (and CPz's requirement of closure under L)  that 

{PIPP~,> = Pl+> or = O} C_ Def~,)(Atom + Cat) 

So by CP2, the ortholattice generated by the union of sets 

{PIPPI,> = Pl,) or = 0} tO {I | PIAlive)cat, I | PIDead)cat} 

must be contained in Def~,)(Atom + Cat). All we need to show is that this 
ortholattice is in fact {P(Atom + Cat)}, hence we have ~MIz. 

It suffices to show that all one-d imens ional  projections of the system 
Atom + Cat can be generated from elements in either of the two sets in the 
union above, since these projections are the generating atoms of the full 
ortholattice {P(Atom + Cat)}]  

Since ItS) is an entangled state, it must live in a Hilbert space of at least 
four dimensions; but without loss of generality we may assume that to be 
exactly four (since the argument readily generalizes to any higher dimension). 
Because the ortholattice operations on projections directly correspond to 
subspace operations in the Hilbert space of IqJ), I will switch freely between 
speaking of projection operators  and their ranges  (i.e. corresponding sub- 
spaces), using the same notation for both. 

For state IqJ) we took 0 < w 1 ::~ w 2 < 1, thus we must have 

(I | PiAlive)cat)Pi0) r P~,) and r 0, (I @ PiDead)cat)Pi,) • Pl,> and r 0 

So, geometrically, we are starting with two orthogonal planes (the 'alive' 
and 'dead' planes, if I can say that) in the ortholattice, both skew to ray P~o>, 
as well as P~+> itself, and all rays orthogonal to it. We need only focus on 
one of the planes, say I | PIAlive)cat- 

Consider a ray P~+>, inside the plane I | PtA]ive)cat, that is also skew to 
PI,~. Since we can write I~b) = Ida,) + Iqb, t),  with Ida,) in the ray Pi,> and 
I~b,• orthogonal to that ray, 

PI+) = (PI+,) @ el+,• ("1 (I | PlAlive)cat ) 

so P~+> must be in the ortholattice, too, as well as I - P~+>. 
But now all rays in the three-dimensional subspace I - Pj,> must be in 

the ortholattice by exactly the same sort of argument. For considering any 
such ray P~> that is not already in the ortholattice by virtue of being orthogonal 
to P~,> (so P~> is a ray in I - P~,> skew to P~,>), we can always write la) = 
Ic%) + I%• yielding 

7The argument from this point onward is a variation on an argument Jeff Bub and I arrived 
at in correspondence, though its application here as a constraint on modal interpretations is 
novel and not necessarily endorsed by Bub. 
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PF~> = (PI~,> O P,~,.>) N (I - Pp+>) 

(This intersection does genuinely produce the ray P~(~> and not the plane 
P,~+> �9 P~,• again, since that plane cannot be properly contained in the 
three-dimensional subspace I - P,+} if P,,> is skew to P,+> = P,%>.) 

Taking stock, then, we have in the ortholattice the rays P~,>, PE+> (skew 
to P~,>), and all rays in each of the three-dimensional subspaces I - P~,> and 
I - P~,>. It now follows that all rays in the four-dimensional Hilbert space 
of the Atom + Cat system must be in the ortholattice. 

For let P,~> be a ray not already found to be in the ortholattice. Since 
we can decompose 113) in two distinct ways as 113) = 113,) + 113,• = 113,} 
+ 113,1), we can get ray P~} as the intersection of two planes generated by 
orthogonal rays already in the ortholattice: 

The only case in which this argument breaks down is if, perhance, the two 
intersected planes coincide, intersecting in the plane again rather than the 
ray P~>. This will happen only if 113) is in the span of I+} and Id)). If so, then 
consider I+'), obtained by rotating 16) about I+) out of the subspace they 
span. Since 113) is not in the span of I~} and Iqb'), and P~,,) is in the ortholattice 
already (just set 113) = Iqb') in the argument just given), let P~+,) now play 
the role of P~e,) throughout the above arguments to get P~> into the 
ortholattice. QED 

4. C O N C L U S I O N :  H O W  HIGH IS THE COST FOR MODAL 
INTERPRETATIONS ? 

By the nature of the project, any interpretation of quantum mechanics 
will have its own story to tell about the behavior of physical properties. Hidden 
variables remove the radical conceptual breakdown required by orthodoxy, but 
at the cost of explicitly introducing contextualism and nonlocality. Modal 
interpretations do not pay that price, but are now seen to have to pay another: 
at least one of CPI, CP2, or CP3 must be rejected. 

I do not know which of these is easiest to give up without destroying 
the initial attraction of the modal interpretation's 'hybrid' orthodox/hidden- 
variable approach. But if I were forced to choose right now, I would opt for 
the way Bub (1994) is able to deny CP~ (without also having to reject CP2 
or CP3). For he seems to be able to do so without  sacrificing one of the 
central intuitions behind CP~--that when we have a prediction with certainty, 
there must be some intrinsic property present in the system to ground the 
validity of that prediction. The parting of ways between Bub and CPt comes 
about because, for Bub, there is always one 'preferred' observable (which 
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is most naturally taken to be position) whose dynamical behavior explains 
the predicted values found for all the other observables by being the observable 
through which all those others are measured. So Bub has no need to go as 
far as CP~ does in attributing a preexisting value to each and every observable 
which happens to have a value certain to be found on measurement) 
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